Math 10 MPS - Homework 10

 A researcher wanted to study users of smart phones and see if there has been a change in customer preference over the last 7 months. 1000 smart phone users were asked what brand of phone they were using and the results will be compared to the actual percentages (market share) from April 2013. Using a significance level of 5%, conduct a Chi-square goodness of fit test to see if there has been a change in customer preference.

Data from 7 months ago:	30% Samsung	20% Apple	50% Other
Sample from now:	360 Samsung	180 Apple	460 Other

2. In a recent SurveyUSA poll, 500 Americans adults were asked if marijuana should be legalized. The results of the poll were cross tabulated as shown in the contingency tables below. Conduct **two** tests for independence to determine if opinion about legalization of marijuana is dependent on gender or age

Male	Female	
123	90	
127	160	
	25.54	
18-34	35-54	55+
18-34 95	35-54 83	55+ 48
	Male 123 127	Male Female 123 90 127 160

- 3. People who are concerned about their health may prefer hot dogs that are low in salt and calories. The data contains data on the calories and sodium contained in each of 54 major hot dog brands. The hot dogs are classified by type: beef, poultry, and meat (mostly pork and beef, but up to 15% poultry meat). Minitab output is attached for two different hypothesis tests.
 - **a.** A test for a difference in **calories** due to hot dog type will be performed.
 - i. Design the test.
 - ii. Fill in the missing information in the ANOVA table on the next page.
 - iii. Conduct the test with an overall confidence level of 5%, including pairwise comparisons.
 - **b.** A test for a difference in **sodium** due to hot dog type will be performed.
 - **i.** Design the test.
 - ii. Fill in the missing information in the ANOVA table on the last page.
 - iii. Conduct the test with an overall confidence level of 5%, including pairwise comparisons.

One-way ANOVA: Calories versus Type

Source]	DF	SS	MS	F	ľ	p-value
Type			17692				0.000
Error			28067				
Total			15759		-		
IUCAL			43739				
				Individual	95% CIs	For Mean	Based on
				Pooled StD	ev		
Level	Ν	Mean	StDev	+	+	+	+
Beef	20	156.85	22.64			()
Meat	17	158.71	25.24			()
Poultry	17	118.76	22.55	(*)		
				+	+	+	
				112	128	144	160

Grouping Information Using Tukey Method

Туре	Ν	Mean	Grouping
Meat	17	158.71	A
Beef	20	156.85	A
Poultry	17	118.76	В

Means that do not share a letter are significantly different.

One-way ANOVA: Sodium versus Type

Source	DF	SS	MS	F	p-value
Туре		31739			0.179
Error		455249			
Total		486988			

				Individual	95%	CIs	For	Mean	Based	on
Pooled S	StDev									
Level	Ν	Mean	StDev	+	+			+	+-	
Beef	20	401.15	102.43	(*			-)		
Meat	17	418.53	93.87	(*_			-)	
Poultry	17	459.00	84.74			(,	*)
				+	+			+	+-	
				360 4	100		44()	480	

Grouping Information Using Tukey Method

Туре	Ν	Mean	Grouping
Poultry	17	459.00	A
Meat	17	418.53	A
Beef	20	401.15	A

Means that do not share a letter are significantly different.

