- 3. 70% of the US population are troubled by the economy. You randomly sample 20 people. Let X be the number in your sample who are troubled by the economy.
 - a. What type of random variable is this? What are the parameters of the model? Brownial n = 20 p = 3
 - b. Find the population mean and standard deviation. $M = n\rho = (20)(.7) = 14$

$$M = np = (20)(.7) = 14$$

$$0 = \sqrt{npq} = \sqrt{(20)(.7)(.3)} = 2.05$$

- c. Find the probability that exactly 15 people in your sample are troubled by the economy. $P(x=15)^{7}$
- d. Find the probability that more than 15 people in your sample are troubled by the economy. P(X>15) = P(16) + P(15) + P(15) + P(15) + P(15) + P(15) = 238
- e. Would it be unusual if only 7 people in your sample were troubled by the economy? Justify your answer. $P(X \le 7) = -00 \, (\longrightarrow +1.5 \, () \, \ln 5 \, \ln 5$

Math 10 - Continuous Random Variables

1. The completion time (in minutes) for a student to complete a short quiz follows the probability density function shown here, with some areas calculated.

a. Find the probability that a student completes the exam in 4 minutes or less.

$$0.08 + 0.28 = 0.36$$

b. Find the probability that a student needs between 8 and 10 minutes to finish the quiz.

$$0.08 + 0.05 = 0.13$$

c. If the instructor allows 10 minutes for the quiz and the class has 40 students, how many students will run out of time before the quiz is finished?

$$(.05)(40) = 2$$
 students

d. Find the 66^{th} percentile of the distribution.

- 2. Annual rainfall in a Bay Area city follows a Normal distribution with μ =20 inches and σ =5.
 - a. Find and shade the probability of 30 or more inches of rain in a randomly selected year.

$$P(x = 30)$$

$$P(2 = 30 - 20)$$

$$P(\geq 2 = 1 - .9772$$

$$(0228)$$

b. Find and shade the probability of less than 15 inches of rain in a randomly selected year.

$$P(x<15)$$

 $P(z<\frac{15-20}{5})$
 $P(z<-1.00) = (.1587)$

c. Find and shade the probability of between 15 and 25 inches of rain in a randomly selected year.

$$P(15 < x < 25)$$

$$P(\frac{15 - 10}{5} \ge < \frac{25 - 20}{5})$$

$$P(-1.00 \le \ge < 1.00)$$

$$.8413 - .1587 = .6826$$

d. Find and graph the 95^{th} percentile of rainfall in a randomly selected year.

e. Find and graph the Interquartile range.

$$Z_{25} = -.67$$

$$Q_1 = 20 -.67(5) = 16.65$$

$$Z_{25} = 4.67$$

$$Q_3 = 20 + .67(5) = 23.35$$

f. Between what two numbers would you expect to find the annual rainfall 95% of the time?

