Central Limit Theorem for Sample Mean

The lifetime of optical scanning drives follows a skewed distribution with $\mu=100$ and $\sigma=100$. Data is repeatedly sampled from this distribution and sample means are calculated for different sample sizes.

1. Here are dot plots of all 5 sample sizes using the Multiple Y's Simple option of Minitab. Each dot represents a single calculation of a sample mean.

- a. As the sample size changes, describe the change in center.
- b. As the sample size changes, describe the change in spread.
- c. As the sample size changes, describe the change in shape.
- 2. Using the command STAT>DISPLAY DESCRIPTIVE STATISTICS, here are the mean and standard deviation for each of the five groups. Paste the results here.

Variable	Mean	StDev
CLT n=1	97.66	102.37
CLT n=5	100.10	44.42
CLT n=10	100.01	31.19
CLT $n=30$	100.29	18.07
CLT n=100	100.34	10.24

- a. As the sample size changes, describe the change in mean.
- b. As the sample size changes, describe the change in standard deviation.

Central Limit Theorem for the Sample Proportion

- 3. First, let's identify the **population proportion.** If you roll a six-sided die, what proportion would you expect to come up 6? Write this as a fraction **and** a decimal.
- 4. The dotplots labeled "CLT for p n=##" represent 1000 trials of rolling a six-sided die 5, 10, 50, 100 or 500 times. Each dot represents the **sample proportion** of times a 6 was rolled for each of the sample sizes. We know that the sample proportion is a random variable that we want to investigate.

- a. How has the center changed as the sample size increased?
- b. How has the spread (range) changed as the sample size increased?
- c. How has the shape changed as the sample size increased?
- 5. What you have observed in this worksheet are the **three** important parts of the Central Limit Theorem for the distribution of the sample mean \bar{X} and the sample proportion \hat{p} . In your own words, describe these three important parts.